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ABSTRACT
We present a self-consistent model for stellar turbulent convection that is similar in spirit to the CM

model (Canuto & Mazzitelli 1991) since it accounts for the full spectrum of the turbulent eddies rather
than only one eddy, as done in the mixing length theory (MLT). The model di†ers from the CM model
in the treatment of the rate of energy input from the source that generates the turbulence. In then

s
(k)

present model, is controlled by both the source and the turbulence it ultimately generates, thusn
s
(k)

ensuring a self-consistent modeling of the turbulence. This improves the CM model in which wasn
s
(k)

taken to be equal to the growth rate of the linear unstable convective modes.
However, since the formulation of a self-consistent treatment is far from simple, we were forced to use

a representation of the nonlinear interactions less complete than the one in the CM model. The ensuing
equations were solved numerically for a wide range of convective efficiencies. The results are the convec-
tive Ñux, the mean square turbulent velocity, the root mean squared turbulent pressure and the turbulent
viscosity.

We implemented the model in the ATON stellar structure code and computed the evolution of a solar
model. The results are generally similar to those of the CM model and thus quite di†erent from the
MLT. The present model requires a smaller overshoot into the upper radiative zone than does the CM
model, in accord with recent empirical estimates. Application to Population II stars and comparison
with the very metal-poor globular cluster M68 yields an age in the range 11È12 Gyr. This is somewhat
younger than the CM age, which in turn is younger than the corresponding MLT age, a result of pos-
sible cosmological interest.
Subject headings : convection È stars : evolution È stars : interiors È Sun: interior È turbulence

1. INTRODUCTION

Recently, & Mazzitelli hereafter pro-Canuto (1991, CM)
posed an improved model for stellar convection. Being
derived from a turbulence model, it takes into account the
contribution of the full spectrum of the turbulent convective
eddies, to the convective Ñux. In stellar interiors the micro-
scopic viscosity is very small compared to the turbulent
viscosity, implying that the turbulent spectrum spans many
decades in wavenumber space. Therefore, in this respect, the

model represents a signiÐcant improvement over theCM
mixing length theory approach (MLT), which is a one eddy
(the largest) approximation to the spectrum. Moreover, in
the model, the turbulent mixing length scale is theCM
depth z, so there is no need for an adjustable free parameter
like the MLT a-parameter. The resulting convective Ñuxes
are higher than those of the MLT for high convective effi-
ciencies, and smaller than them for low efficiencies. The
model performs better than the MLT when applied to
stellar structure & Mazzitelli(DÏAntona 1994 ; Mazzitelli,
DÏAntona & Caloi & Chin &1995 ; Stothers 1995 ; Althaus
Benvenuto helioseismology & Mironova1996), (Baturin

Christensen-Dalsgaard, & Thompson1995 ; Monteiro,
& Basu and stellar atmospheres1995 ; Antia 1995), (Kupka

1995).
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In the model, the turbulence spectral function E(k) isCM
determined by the timescale controlling the energy input
from buoyancy, that is, the source that generates the turbu-
lence. This timescale is expected to depend on the param-
eters of the source as well as on the turbulence spectrum
itself. The quantiÐcation of the latter dependence, within the

model, is far from obvious. Thus, assumed that theCM CM
above timescale can be approximated by the inverse of the
growth rate of the unstable modes of the linearized equa-
tions. By construction, the latter depends only on the source
and is independent of the turbulence it generates. The linear
rate was used also by Goldman, & ChasnovCanuto, (1987,
hereafter who, generalizing the work of &CGC), Canuto
Goldman proposed a model for fully developed(1985),
turbulence. The linear rate was also employed by Hartke,
Canuto, & Dannevik in the framework of a DIA(1988)
(direct interaction approximation) model for turbulent con-
vection and by et al. for EDQNM (EddyCanuto (1991)
Damped Quasi-Normal Markovian) models.

The rate of energy input in the model must beCM
improved since a fully developed turbulence is expected to
regulate the energy input from source (buoyancy). The lack
of feedback from the turbulence on the energy input, pre-
vents the model from being self-consistent. However,
because of the complex structure of the EDQNM closure,
the implementation of a self-consistent rate into the formal-
ism of the model is not simple. Thus, we were forced toCM
simplify the structure of the nonlinear interactions, so as to
be able to formulate a workable self-consistent treatment.

In modeling the nonlinear interactions, we follow the
work of However, in the present model we generalizeCGC.
the deÐnition of the eddy correlation timescale, thus cor-
recting some shortcomings in the physics involved, and
leading to an improved closure. The resulting e†ective rate
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of energy input from the source (buoyancy) depends now on
both the source and the turbulence. As stated, the present
approach is complementary to that of the model. HereCM
the focus is on the self-consistent rate of energy input and
not on the closure, which is much simpler than that of the

model.CM
In spite of the highly nonlinear structure of the model

equations, it is possible to solve them directly with no need
for iterations. This reduced considerably the amount of
numerical work required and allowed for an exploration of
the model for a wide range of values of the convective effi-
ciency, S, deÐned in For each value of S weequation (51).
obtained the spectral function that determines the turbu-
lence bulk quantities. Thus, we computed, as functions of S,
the convective Ñux, the turbulent viscosity, the turbulent
mean squared velocity and the root mean squared turbulent
pressure.

We have applied the new model to the main-sequence
evolution of a solar model as well as to the evolutions of an
extreme Population II chemical composition (Y \ 0.23,
Z\ 10~4) stars with The results are gener-M ¹ 0.9 M

_
.

ally similar to those of the model. However, the newCM
model has the advantage that the overshoot required to Ðt
the solar model is much smaller, in accord with recent
empirical estimates, and the ages of globular clusters are
also somewhat smaller than the corresponding ages in the

model (which in turn are smaller than those derivedCM
within the MLT framework).

2. THE MODEL

2.1. T he Rate Controlling Energy Input from the Source
Let us consider a fully developed stationary turbulent

convection characterized by the spectral functions F(k),
G(k), and H(k), of the turbulent velocity, temperature Ñuc-
tuations, and the turbulent convective Ñux, respectively.
Before doing so, we write the dynamical time-dependent
equations obeyed by these spectral functions (Yamaguchi
1963) :

L
Lt

F(k) ] lk2F(k) \ gaH(k) ] T
F
(k) , (1)

L
Lt

G(k) ] sk2G(k) \ bH(k)] T
G
(k) , (2)

and

L
Lt

H(k)] (l] s)k2H(k) \ bq(k)F(k) ] gaqG(k) ] T
H
(k) ,

(3)

where and denote the nonlinear transfer terms forT
F
, T

G
, T

Hthe turbulent velocity, temperature, and convective Ñux.
Here g is the gravitational acceleration, a is the coefficient of
thermal volume expansion at constant pressure (equaling
T ~1 for an ideal gas), b is the superadiabatic temperature
gradient, l is the microscopic viscosity, and s is the micro-
scopic thermometric conductivity appearing in the expres-
sion for the conductive Ñux

Fcond\ [c
p
os

dT
dz

. (4)

In stellar interiors, the dominant conductive Ñux is the radi-
ative Ñux and thus s is the radiative thermometric conduc-

tivity. The function q(k) is given by

q(k) \ x(k)
1 ] x(k)

, (5)

with measuring the anisotropy of the eddy cor-x(k) \ k
h
2/k

v
2

responding to the wavenumber k. Here and stand fork
h

k
vthe horizontal and vertical wavenumbers, respectively (the

vertical direction is that of the gravitational acceleration).
In gaH(k) plays the role of the energy sourceequation (1),

driving the velocity Ñuctuations. More precisely, it equals
the rate of energy per unit mass and per unit wavenumber,
fed to the turbulence velocity Ðeld at wavenumber k. The
term lk2F(k) is the rate of energy per unit mass and unit
wavenumber dissipated at k by the microscopic viscosity,
while represent the rate of energy per unit mass and[T

F
(k)

unit wavenumber transferred to wavenumbers other than k.
Analogous interpretations apply to whichequation (2),
describes the temperature Ñuctuations Ðeld.

As stated above, we are interested in stationary turbu-
lence. Thus, in equations we set the time derivatives(1)È(3)
of the spectral functions equal to zero. Following weCGC,
assume that

T
H
(k)

H(k)
\T

F
(k)

F(k)
] T

G
(k)

G(k)
, (6)

which equations and show to be equivalent to the(1), (2), (3)
assumption

H(k) \ [q(k)F(k)G(k)]1@2 . (7)

For to be satisÐed, the velocity and tem-equation (7)
perature Ñuctuations, at any k, must be in phase. This is
expected to be the case for turbulent convection where the
temperature plays the role of an active scalar whose Ñuctua-
tions drive the velocity Ñuctuations.

We adopt the simplifying assumption that the transfer
terms in equations and describe transfer from small to(1) (2)
large wavenumbers only (from large spatial scales to small
ones). While justiÐed in three-dimensional turbulence where
energy Ñows predominantly from large to small scales, this
simplifying assumption neglects nonlocal interactions (in k
space) that give rise to reverse transfer (backscatter).

Denoting by the wavenumber corresponding to thek0largest eddy, we shall represent the transfer as

P
k0

k
T
F
(k@)dk@\ [l

t
(k)y(k) , (8)

where

y(k) \
P
k0

k
F(k@)k@2 dk@ (9)

is the mean squared turbulent vorticity and is the turb-l
t
(k)

ulent viscosity at wavenumber k, exerted by all eddies of
smaller size (larger k). As such, it is expressed as an integral
with limits k and O. We shall return later to the deÐnition
of the integrand. Similarly,

P
k0

k
T
G
(k@)dk@\ [s

t
(k)w(k) , (10)

where

w(k)\
P
k0

k
G(k@)k@2 dk@ (11)
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is the analog to the mean squared turbulent vorticity and
is the turbulent conductivity at wavenumber k exerteds

t
(k)

by all eddies of smaller size (larger k). With these closures,
we obtain by integrating equations and(1) (2)

ga
P
k0

k
H(k@)dk@\ [l] l

t
(k)]y(k) , (12)

and

b
P
k0

k
H(k@)dk@\ [s ] s

t
(k)]w(k) . (13)

The last two equations allow us to express the spectral
function G(k) in terms of F(k). We obtain

G(k)\ b
ga

j(k)F(k) , (14)

with

j(k) \ [y(k)&
t
(k)]@

y@(k)
, (15)

&
t
(k) \ l] l

t
(k)

s ] s
t
(k)

, (16)

where a prime denotes a di†erentiation with respect to k.
Substituting in yieldsequation (14) equation (7)

H(k)\
C b
ga

q(k)j(k)
D1@2

F(k) . (17)

Thus, once F(k) is known so are G(k) and H(k), implying
that one needs to solve only for the spectral function F(k). In
order to do so, let us return to and expressequation (12)
H(k) in terms of F(k) using We obtainequation (17).

P
k0

k
[n

s
(k@) ] lk@2]F(k@)dk@ \ [l] l

t
(k)]y(k) , (18)

where is the shorthand abbreviationn
s
(k)

n
s
(k) 4 [lk2] [gabq(k)j(k)]1@2 , (19)

whose dimension are inverse time. The combination n
s
(k)

] lk2 plays, in the role of the inverse of theequation (18),
timescale controlling the energy input into the turbulence at
wavenumber k from the source (buoyancy in the present
case). More speciÐcally, the net rate of energy input from the
source per unit mass and unit wavenumber, at k, is n

s
(k)F(k).

It is obvious, from that depends on theequation (19), n
s
(k)

source (buoyancy) and on the turbulent state. Thus, it con-
forms with the requirements discussed in In what° 1.
follows we show that equations and allow us to(18) (19)
express in terms of the turbulent viscosity First,n

s
(k) l

t
(k).

di†erentiate with respect to k. The result isequation (18)

n
s
(k)[ l

t
(k)@

y(k)
F(k)

\ l
t
(k)k2 . (20)

Next, use equations and and the deÐnition of y(k),(15) (20)
to getequation (9),

j(k) \ &
t
(k) ] &

t
(k)@

k2l
t
(k)@

[n
s
(k) [ l

t
k2] . (21)

With the help of we transformequation (19), equation (21)
into a second-order algebraic equation for j(k) :

j(k) \ &
t
2(k)

s
t
@

l
t
@
] [gabq(k)j(k)]1@2k~2 &

t
@

l
t
@

, (22)

whose positive solution is

j(k) \ 1
2

[gabq(k)j]1@2k~2 &
t
@

l
t
@

]
G
1 ]

C
1 ] 4k4

gabq
A&

t
&

t
@
B2

s
t
@ l

t
@
D1@2H

. (23)

We adopt a relation between ands
t
(k) l

t
(k)

s
t
(k) \ [s2] p

t
~2l

t
2(k)]1@2 [ s (24)

so that, as in equals the constant for largeCGC, l
t
(k)/s

t
(k) p

tPeclet numbers, whilePe\ l
t
(k)/s, l

t
(k)/s

t
(k) \ 2p

t
2 s/l

t
(k),

for small Pe. Using to express and inequation (24) &
t

s
tterms of now takes the forml

t
, equation (23)

j1@2(k) \ 1
2

(gab)1@2s~1q1@2(k)k~2 B(k)
A(k)

, (25)

with

A(k) \ [1] p
t
~2l

t
2(k)s~2]3@2 , (26)

and

B(k) \ 1 [ ll
t
(k)

p
t
2 s2 ]

G1
2
C
1 [ ll

t
(k)

p
t
2 s2
D2

] A(k)
4k4l

t
(k)[l] l

t
(k)]2

gabsp
t
2q(k)

H
. (27)

With this j(k), of becomesn
s
(k) equation (19)

n
s
(k) \ [lk2] gab

2s
q(k)
k2

B(k)
A(k)

. (28)

Thus, we succeeded in expressing in terms of the turbu-n
s
(k)

lent viscosity even though the latter is still unspeciÐed.l
t
(k),

2.2. T he Eddy-Correlation T imescale
In order to solve (or, equivalently,equation (18) eq. [20])

we need an additional relation between the turbulent vis-
cosity and the spectral function F(k). Without loss ofl

t
(k)

generality, can be written asl
t
(k)

l
t
(k) \

P
k

= F(k@)
n
c
*(k@)

dk@ , (29)

where has the dimensions of an inverse time. In ordern
c
*(k)

to determine let us focus on its physical meaning.n
c
*(k)

Di†erentiation of yields that the turbulentequation (29)
viscosity contributed by eddies in the wavenumber interval
(k, k ] dk) is

dl
t
\ n

c
*(k)~1F(k)dk . (30)

Thus, is proportional to the inverse of the eddy-n
c
*(k)

correlation timescale at wavenumber k, or heuristically, the
inverse of the timescale for the eddy breakup. The eddy is
damped because of two processes : interaction with the turb-
ulent viscosity and the interaction with the source
(microscopic viscosity is not considered here since in stars

One can envisage the eddy as being ““ scattered ÏÏ byl> l
t
).
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““ collisions ÏÏ with the smaller eddies (turbulent viscosity)
and by the source that drives energy into the eddy. The
e†ective rate for the breakup (the inverse of the correlation
timescale) will be taken to be the sum of the rates for the
two processes as if they were operating independently :

plus the sum of the rates for each process,l
t
(k)k2] n

s
(k),

which is now a†ected by the other. Between ““ collisions ÏÏ
due to one process there is a random walk due to
““ collisions ÏÏ of the other process. Thus, these last two rates
are and Summing up then

s
(l

t
k2/n

s
)1@2 l

t
k2[n

s
/(l

t
k2)]1@2.

four rates we obtain

cn
c
*(k) \ l

t
(k)k2] n

s
(k) ] 2[l

t
(k)k2n

s
(k)]1@2

\ M[l
t
(k)k2]1@2] n

s
(k)1@2N2 , (31)

where c is a proportionality constant, determined by the
normalization of y(k) in the inertial range. In this range
equations and yield(20), (29), (31)

y(k) \ c~1[l
t
(k)k2]2 , (32)

while results inequation (18)

v\ y(k)l
t
(k) , (33)

with v\ v(O), where

v(k) \
P
k0

k
[n

s
(k@) ] lk@2]F(k@)dk@\ [l] l

t
(k)]y(k) (34)

is the energy rate per unit mass supplied to the turbulence
from the driving source at all wavenumbers smaller than k.
Combined together, equations and imply that(32) (33)

y(k) \ v2@3c~1@3k4@3 . (35)

This should coincide with y(k) corresponding to the Kolmo-
gorov spectral function

yK(k) \ 32KO
v2@3k4@3 . (36)

Thus, we obtain

c\
A 2
3K

O

B3 \ 0.0878
AK

O
1.5
B~3

, (37)

where is the Kolmogorov constant. We used here theK
Osame normalization with respect to as was used inK

O
CM.

With the deÐnition of the modeln
c
*(k), equation (31),

equations can be solved for F(k), and consequently for G(k)
and H(k). We introduce for notational convenience
(following the convention of the rate deÐned byCGC) n

c
(k)

l
t
k2\ cn

c
(k) . (38)

In the model for large-scale turbulence of &Canuto
Goldman was identiÐed with neglecting the(1985) n

c
* n

s
,

role of the turbulence. In was used, neglectingCGC n
c
* \ n

cthe role of the source. Here depends both on and onn
c
* n

sas seen from equations and so it depends bothn
c
, (31) (38),

on the source and on the turbulence. At andk0, n
c
* \ 4n

ctherefore is 4 times larger than in For high values of kCGC.
(practically few times It is of interest to notek0) n

c
* ] n

c
.

that the inverse of the timescale for two-times velocity
correlation according to the DIA model, indeed conforms
to the present deÐnition of (see Figs. 3 and 4 in &n

c
* Canuto

Battaglia In particular, at it is indeed1988). k0 D4n
c
.

2.3. Di†erential Equation, Spectral Function, and Convective
Flux

From equations and we have(29) (38)

F(k) \ [cn
c
*(k)
An

c
k2
B@

, (39)

and equations and lead to(20) (38)

y(k) \ n
c
*(k)[cn

c
(k) [ n

s
(k)] . (40)

Combining equations and yields the di†erential(39), (40), (9)
equation for n

c
(k)

2n
c
*(k)n

c
@ (k) ] n

c
*(k)@[n

c
(k) [ c~1n

s
(k)]

[ c~1n
c
*(k)n

s
@(k) [ 2n

c
(k)n

c
*(k)

1
k
\ 0 , (41)

with and deÐned as functionals of throughn
s
(k) n

c
*(k) n

c
(k)

equations and respectively. A solution for will(28) (31), n
c
(k)

also yield these two rates, as well as the spectral function
F(k) and the mean squared turbulent vorticity y(k).

The main objective of this work is the computation of the
turbulent convective Ñux

F
c
\ c

p
ou3 h \ c

p
o
P
k0

=
H(k)dk \ c

p
obs' . (42)

Here is the turbulent velocity in the Ñux direction, h is theu3temperature Ñuctuation, and the overbar denotes ensemble
averaging. The dimensionless convective Ñux ' is deter-
mined by equations and to be(12) (34)

'\ v(gabs)~1 . (43)

The value of v will be determined by using the fact that v(k)
increases with k and reaches its asymptotic value already in
the inertial range. Thus, we shall follow the solution of n

c
(k)

and the corresponding v(k), from up to the inertial range,k0until v(k) saturates to v. From equations and(34), (38), (40)
we Ðnd

v(k)\ n
c
*(k)
C
l] cn

c
(k)

k2
D
[cn

c
(k) [ n

s
(k)] . (44)

Thus, once is obtained, v(k) is determined too.n
c
(k)

3. SOLUTION PROCEDURE

Turn now to the which is a Ðrst-order dif-equation (41),
ferential equation for and thus a boundary value isn

c
(k)

required for a unique solution. Below we Ðnd the value of
The value of is determined by the width of then

c
(k0). k0layer ",

k0\ n
"

(1] x0)1@2 , (45)

with Since by deÐnition andx04 x(k0). F(k0) \ 0 y(k0) \ 0,
equations and imply that(39) (40)

cn
c
(k0)\ n

s
(k0) \ l

t
(k0)k02 (46)

and

An
s

k2
B
k0

@ \
Acn

c
k2
B
k0

@ \ 0 . (47)
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The last two equations together with deter-equation (28)
mine n

c
(k0)

cn
c
(k0) \ p

t
sk02 z0 , (48)

where is the solution ofz0
Ap
p
t
] z0

B2
(1] z02)\

x0
1 ] x0

p
t
~2S12 , (49)

with

S1\ n~4(1 ] x0)~2S \ 0.0045627S , (50)

where S is the dimensionless product of the Rayleigh and
Prandtl numbers

S \ gab"4
s2 . (51)

The quantity S, or more precisely is a measure of theS1,convective efficiency. With the determination of n
c
(k0),can be solved numerically to yield forequation (41) n

c
(k)

any value of S.
Since we deal with stellar interiors for which

p \ ls~1> 1, we take in all the equations the limit of l] 0.
Physically, this means that the wavenumber at which the
rate of dissipation by the microscopic viscosity becomes
equal to is much larger than so that the spectrumcn

c
(k), k0,exhibits an inertial range over many decades of k. For the

limit of l] 0, appropriate for stellar interiors, equation (49)
yields an analytic solution for as function of S,z0

z0\ 21@2p
t
~1q(1)S1

J
, (52)

1 ] J1 ] 4S12q2(1)p
t
~2

implying that

cn
c
(k0) \ n

s
(k0) \ (gab)1@2g0(S) \ s

"2 S1@2g0(S) , (53)

with

g0(S) \ 21@2q(1)S11@2
J

, (54)
1 ] J1 ] 4S12q2(1)p

t
~2

and It is convenient to express theq(1)\ x0(1] x0)~1.
equations in terms of normalized rates

g
s
(k)\ n

s
(k)

n
s
(k0)

, (55)

g
c
(k)\ cn

c
(k)

n
s
(k0)

, (56)

and

g
c
*(k)\ cn

c
*(k)

n
s
(k0)

, (57)

and to introduce a dimensionless wavenumber

q \ k
k0

. (58)

Using equations and in results(26), (27), (28) equation (47)
in

Cq(k)
k4
D
k0

@ \ 0 . (59)

We adopt, following CGC,

x(k) \
Ak"

n
B2[ 1 , (60)

for which yieldsequation (59)

k0\
A3
2
B1@2n

"
. (61)

Thus,

q(q) \ 1 [ 2
3q2 (62)

and

x0\ 12 . (63)

The di†erential equation for is obtained fromg
c
(q) equation

(41) :

2g
c
*(q)g

c
@ (q) ] g

c
*(q)@[g

c
(q) [ g

s
(q)]

[ g
c
*(q)g

s
@(q) [ 2g

c
(q)g

c
*(q)

1
q
\ 0 , (64)

where now the prime denotes di†erentiation with respect to
q. By deÐnition (see eqs. and[55], [56], [57]),

g
c
(q \ 1) \ g

s
(q \ 1)\ 1 , g

c
*(q \ 1) \ 4 , (65)

for any S. We have now

g
s
(q) \ S11@2g0~1q(q)B(q)

2q2A(q)
, (66)

where

A(q) \
C
1 ] S1g02 g

c
2(q)

p
t
2q4

D3@2
, (67)

and

B(q) \ 1 ]
C
1 ] 4S11@2g03A(q)g

c
3(q)

p
t
2q(q)q2

D1@2
. (68)

The use of the normalized rates ensures that the computed
quantities will not be very small (large) even for very small
(large) S-values, thus improving the numerical accuracy.

becomes nowEquation (44)

v(q) \ 1
c

(gabs)g03 S11@2q~2g
c
(q)g

c
*(q)[g

c
(q)[ g

s
(q)] , (69)

the dimensionless convective Ñux is given by

'(S)\ 1
c

g03 S11@2qf
~2g

c
(q

f
)g

c
*(q

f
)[g

c
(q

f
) [ g

s
(q

f
)] , (70)

where is the upper value of q for which isq
f

equation (64)
solved and is well inside the inertial range (thus, v(q

f
) \ v).

4. RESULTS

4.1. Convective Flux
We solved for with the initial condi-equation (64) g

c
(q),

tion of for S in the range 10~4È1020. Weequation (65),
adopted the commonly used value of Each solu-p

t
\ 0.72.

tion yields and and the spectral function F(q). Forg
s
(q) g

c
*(q)

each such solution we computed v(q), followed it to satura-
tion, and thus obtained v(S) and '(S). In we showFigure 1
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FIG. 1.Èv(q) in units of for S \ 106. The asymptotic(K
O
/1.5)3gabs,

value shown is actually ' in units of (K
O
/1.5)3.

v(q) in units of for S \ 106. The qualitative(K
O
/1.5)3gabs,

behavior of v(q) is typical for any value of S : it starts from
zero and saturates in the inertial range to v. From equations

and it follows that the asymptotic value of the(69) (70)
graph equals ' in units of (K

O
/1.5)3.

In we list '(S) (rounded to 4 w Ðgures) for 20Table 1
representative values of S. From it followsequation (70)
that The values shown in are in'(S) P c~1P K

O
3 . Table 1

units of The limiting behavior of '(S) is given by(K
O
/1.5)3.

'\ 2.65] 10~5
AK

O
1.5
B3

S2 , S > 1 , (71)

and

'\ 1.6853
AK

O
1.5
B3A p

t
0.72
B3@2

S1@2 , S ? 1 . (72)

In applications of '(S) to stellar structure codes, it is useful
to have an analytic Ðt formula to the convective Ñux. We

derived such a Ðt with a deviation [ 3%:

'\ F1(S)F2(S) , (73)

where

F1(S) \
AK

O
1.5
B3

aSk[(1] bS)m [ 1]n , (74)

where

a \ 10.8654, b \ 0.00489073, k \ 0.149888 ,

m\ 0.189238, n \ 1.85011 ,

and

F2(S) \ 1 ] cSp

1 ] dSq
] eSr

1 ] fSt
, (75)

where

c\ 0.0108071, d \ 0.00301208, e\ 0.000334441 ,

f\ 0.000125, p \ 0.72, q \ 0.92, r \ 1.2, t \ 1.5 .

In order to judge the quality of the Ðt, in weFigure 2
display the ratio between the Ðt function and an inter-
polation of the numerical values, as a function of log S.

Also shown in are the ratios andTable 1 '(S)/'MLT(S)
where and are the values corre-'(S)/'CM(S), 'MLT 'CMsponding to the MLT,

'MLT(S) \ 72916 S~1[(1] 281S)1@2[ 1]3 , (76)

and to the model (their eq. [32]). Figures andCM 3 4
display and respectively. Note'(S)/'MLT(S) '(S)/'CM(S),
that the qualitative behavior of is similar to'(S)/'MLT(S)
that of the modelÈhigher Ñux for high S and lower ÑuxCM
for low S-values. The comparison with shows that'CM(S)
while the two models yield essentially the same Ñux for high
S-values, the new model predicts higher Ñuxes for interme-
diate and low S-values, and the Ñux ratio is maximal for

TABLE 1

THE RESULTS OF THE MODEL

S '
'

'
MLT

'
'

CM
v6 2 p

t
C

10~4 . . . . . . 2.65] 10~13 0.3091 2.814 2.112] 10~11 5.3408] 10~12 0.2529
0.01 . . . . . . . 2.65] 10~9 0.3092 2.814 2.112] 10~7 5.341] 10~8 0.2529
1. . . . . . . . . . 2.65] 10~5 0.3148 2.819 2.112] 10~3 5.341] 10~4 0.2529
10 . . . . . . . . . 2.649] 10~3 0.3663 2.863 0.2111 0.5339 0.2529
30 . . . . . . . . . 2.38] 10~2 0.4811 2.96 1.895 0.4793 0.2529
102 . . . . . . . 0.2557 0.8745 3.203 20.52 5.186 0.2527
300 . . . . . . . 1.88 1.806 3.409 157.6 39.63 0.2515
103 . . . . . . . 10.23 3.334 3.045 1.019] 103 252.4 0.2478
104 . . . . . . . 85.01 5.82 2.065 1.685] 104 4.017] 103 0.2384
105 . . . . . . . 388.5 7.381 1.59 1.954] 105 4.515] 104 0.2311
106 . . . . . . . 1.442] 103 8.312 1.348 2.049] 106 4.648] 105 0.2268
107 . . . . . . . 4.917] 103 8.849 1.209 2.085] 107 4.680] 106 0.2245
108 . . . . . . . 1.615] 104 9.155 1.125 2.094] 108 4.687] 107 0.2238
109 . . . . . . . 5.21] 104 9.326 1.072 2.099] 109 4.688] 108 0.2233
1010 . . . . . . 1.665] 105 9.42 1.038 2.101] 1010 4.688] 109 0.2231
1012 . . . . . . 1.679] 106 9.498 1.001 2.101] 1012 4.688] 1011 0.2231
1014 . . . . . . 1.684] 107 9.528 0.9863 2.101] 1014 4.689] 1013 0.2231
1016 . . . . . . 1.685] 108 9.534 0.9795 2.101] 1016 4.689] 1015 0.2231
1018 . . . . . . 1.685] 109 9.534 0.9764 2.101] 1018 4.689] 1017 0.2231
1020 . . . . . . 1.685] 1010 9.534 0.9751 2.101] 1020 4.689] 1019 0.2231

NOTEÈ' is in units of and its high S limit scales as v2 and are in units of(K
O
/1.5)3 (p

t
/0.72)3@2. p

tand respectively. Their high S limits scale as The dimension-(s/")2(K
O
/1.5)3 o(s/")2(K

O
/1.5)3, (p

t
/0.72).

less ratio, C, is deÐned in equation (87).
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FIG. 2.ÈRatio between the Ðt function for '(S), and an inter-eq. (73),
polation of the numerical values of '(S).

S D 300. Comparisons of '(S) computed within the new
model with '(S) computed in a model with the same deÐni-
tion of but with equal to the linear growth rate,n

c
*, n

sindicates that the above local maximum at S D 300 is a
feature resulting from the use of the self-consistent rate. We
recall that rather than S is the measure ofS1\ 0.0045627S
the convective efficiencies. Thus, the borderline between low
and high efficiencies is around S \ 300, which is also where
the ratio of the new convective Ñux to that of the modelCM
is maximal.

FIG. 3.ÈRatio '(S)/'MLT(S)

FIG. 4.ÈRatio '(S)/'CM(S)

4.2. T urbulent V elocity, T urbulent Pressure, and
T urbulent V iscosity

The mean squared turbulent velocity is deÐned by

v2\
P
k0

=
F(k)dk , (77)

which with the use of can be expressed asequation (39)

v2\ s2"~2c~1 1
n2(1 ] x0)

Sg02(S)
P
1

=
f (q)dq , (78)

with

f (q) \ [g
c
*(q)
Cg

c
(q)

q2
D@

. (79)

We computed for each value of S and the results arev2
presented in The limiting behavior is given byTable 1.

v2\ 2.1117] 10~3
AK

O
1.5
B3As

"
B2

S2 , S > 1 , (80)

and

v2\ 2.10146
AK

O
1.5
B3A p

t
0.72
BAs

"
B2

S , S ? 1 . (81)

The turbulent pressure is of importance in helio-
seismological models. derived an expres-Batchelor (1953)
sion for the mean squared turbulent pressure (for the case of
isotropic turbulence) in terms of the spectral function F(k)

p
t
2\ 14o2

P
k0

=P
k0

=
F(k)F(k@)I(k/k@)dk@ dk , (82)

where o is the mean density and the dimensionless integral
I(x) is

I(x) \ I
A1
x
B

\ 1
2

(x2] x~2)

[ 1
3

[ 1
4

(x ] x~1)(x [ x~1)2 ln
1 ] x

o 1 [ x o
. (83)

I(x) ] 0 for x ] 0, O and is maximal at x \ 1, where it
equals Thus, the pressure is mostly contributed by k@D k,23.which are close to the maximum of F(k). Using equation

we obtain(39)

p
t
2\ 1

4c2 o2s4"~4 1
n4(1 ] x0)2

S2g04(S)

]
P
1

=P
1

=
f (q) f (q@)I

Ak
k@
B
dq@ dq . (84)

The computed values of the root mean squared turbulent
pressure are displayed in The asymptotic behaviorTable 1.
is given by

p
t
\ 5.3408] 10~4o

As
"
B2AK

O
1.5
B3

S2 , S > 1 , (85)

and

p
t
\ 0.4689o

As
"
B2AK

O
1.5
B3A p

t
0.72
B
S , S ? 1 . (86)
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A quantity of interest is C(S) deÐned as

C(S) \ p
t

ov2
. (87)

The computed values of C are listed in As can beTable 1.
seen, it is almost constant for all values of S, ranging from
0.253 for low S to 0.223 for high values of S.

As with the convective Ñux it is useful to have analytical
Ðt formulae for the mean squared turbulent velocity and for
the root mean squared turbulent pressure. We derived such
Ðts that represent the numerical values with precision better
than 3%. For the mean squared velocity we derive the Ðt

v2\
As
"
B2

F3(S)F4(S) , (88)

where

F3(S) \
AK

O
1.5
B3 0.00101392S2

1 ] J1 ] 0.000017848S2
, (89)

and

F4(S) \ 6.39899

] 2.256815([1.] 0.000777055S0.868589)
1.] 0.000777055S0.868589 . (90)

Similarly, for the root mean square of the turbulent pressure
we Ðnd

p
t
\ o
As
"
B2

F3(S)F5(S) , (91)

with given by andF3(S) equation (89)

F5(S) \ 1.49168] 0.45185
[1.] 0.00111378S0.868589
1.] 0.00111378S0.868589 .

(92)

Finally, the turbulent viscosity, is given in the present model
already in an analytic form. From equations (38), (44), (45),

and we Ðnd that(53), (54)

l
t
4 l

t
(k0) \ s

0.00215086S

J
. (93)

1 ] J1 ] 0.000017848S2
The limiting behavior of is given byl

t
l
t
\ 0.00152089sS , S > 1 (94)

and

l
t
\ 0.03309sS1@2 , S ? 1 . (95)

5. APPLICATION TO STELLAR MODELS

The new convective Ñuxes have been included in the
ATON stellar structure code (for an update on the physical
and numerical details of the code, see et al.Mazzitelli 1995,
and references therein). We have computed the main-
sequence evolution of a solar model as well as a set of
evolutions for Population II stars having M ¹ 0.9 M

_
,

from the zero-age main sequence to the base of the red giant
phase.

Before turning to a detailed discussion of the results, we
recall that, the turbulent length scale " at a given depth z
inside a convective region, must also include the thickness

OV of the overshooting layers (if any) beyond the formal
Schwarzschild boundary (see & MazzitelliDÏAntona 1994).
At present, the OV phenomenon has not yet been fully
quantiÐed in a reliable way even though the(Umezu 1995)
underlying equations have been derived (Canuto 1993).
However, empirical evidence from comparisons between
stellar models constructed with local convection theories
and observations of intermediate mass main-sequence stars
in young open clusters suggests quite stringent limits on the
extent of the OV , namely, &0 ¹ OV ¹ 0.2H

p
(Stothers

Chin Lacking a formal theory, we shall write1992).

"\ z] a*H
p
top , (96)

where is the pressure scale height at the upper bound-H
p
top

ary of the convective layer determined by the Schwarzschild
criterion and a*, which should not exceed 0.2, can be
regarded as a Ðne-tuning parameter.

We stress that the role of a* in the and in the presentCM
models is radically di†erent from the role of the parameter a
in the MLT model where In fact, a is a free"\ aH

p
(z).

adjustable parameter through which modelists try to
capture all the physical uncertainties (e.g., opacities, convec-
tion, thermodynamics etc.) relevant to the evaluation of the
e†ective temperatures of stars. Unfortunately, not only does
this procedure seriously hinder the predictive power of
stellar modeling (a is determined a posteriori), but the Ðt to
the observed surface temperature does not automatically
guarantee that also the internal temperature proÐle is
correct. In this context, it is worth noting that &Baturin
Mironova and et al. have recently(1995) Monteiro (1995)
shown that the solar internal temperature proÐles predicted
by the model are in better agreement with helio-CM
seismological data than those derived from the MLT.
Moreover, has shown that the MLT could beGabriel (1995)
made to predict a internal temperature proÐle,CM-like
provided that a is forced to vary inside the convective region,
in a manner that represents an a posteriori Ðtting. This
quite clearly shows that (1) the MLT has no predictive
power and (2) the degree of artiÐciality that is required to
make the MLT yield results that the model producesCM
quite naturally. The parameter a*, on the other hand, quan-
tiÐes a well identiÐed physical process, the convective over-
shooting OV and, as seen in the following, in the present
model, only a marginal amount of tuning is allowed
anyhow.

Finally, the convective Ñux in is normalized to aTable 1
value of the Kolmogorov constant of as in theK

O
\ 1.5,

model. Since recent experimental data suggest higherCM
values of (up to D1.9), we employed for the stellar mod-K

Oeling a Ðducial value of in the Ðt formula,K
O

\ 1.7 equation
Since, as discussed in the convective Ñux scales as(74). ° 4.1,
the Ñux used is a factor of (1.7/1.5)3 larger than theK

O
3 ,

numerical values in In et al.Table 1. Mazzitelli (1995),
was used.K

O
\ 1.8

Using the ATON code, and updating the low-T opacities
according to & Ferguson we obtained aAlexander (1994),
Ðt to the observed solar radius and luminosity at an age
D4.55 Gyr p. 79), and with a metal abun-(Bahcall 1989,
dance Z\ 0.0175 & Noels with Y D 0.27(Grevesse 1993),
and a* D 0.08. The latter corresponds to a very small
amount of overshooting of a few kilometers and is in full
accordance with the observational limits of & ChinStothers

On the other hand, had we employed the original(1992).
model the required value would have been a* D 0.2,CM
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which is a borderline value. To Ðnd the maximal variance in
allowed by the a* parameter, we computed two solarTeffmodels with the borderline values a* \ 0 and a* \ 0.2. The

di†erence in between these last two models turned outTeffto be less than 4%.
shows the internal proÐles of the dimensionlessFigure 5

temperature gradient, d log T /d log P, in the region of the
overadiabaticity peak for solar models computed with the
present, the and MLT models (for the MLT modelCM
a \ 1.55). The results of the present model are very similar
to those of the model but are quite di†erent from theCM
MLT results. The similarity of the results of the present and

models, in spite of the di†erence (factor D3) in theCM
value of the convective Ñux for intermediate and low con-
vective efficiencies, can be readily understood. In the more
external convective layers, the density is quite low
(o ¹ 10~7), and log S \ 2. The turbulent Ñux is also quite
low, and convective energy transfer is very inefficient. Most
of the Ñux in this region is therefore carried by radiation,
and the temperature gradient sticks to the radiative one. In
deeper convective layers, where o, S and " are larger, con-
vection begins to be efficient and the value of the tem-
perature gradient is determined by the turbulent convective
Ñux. However, for S-values such that log S ? 3, the new
Ñuxes are very close to the ones and so is the resultingCM
temperature gradient. The vicinity of the gradient
peak, log S D 2, is close to the S-value where the present
and models di†er the most (see Thus, this is theCM Fig. 3).
region where we can expect some sizable di†erence between
the temperature proÐles, as indeed shows.Figure 5

Because of the similarity of the results from the present
and the models, the experimental benchmark providedCM
by helioseismological data cannot discriminate between the
two models & Basu However, on the basis of(Antia 1995).
stellar modeling, we stress that the new Ñuxes require a

FIG. 5.ÈDimensionless temperature gradient, d log T /d log P, vs.
pressure in the upper convective layer of the Sun. The solid line corre-
sponds to the present model. The dotted line corresponds to the CM
model. The MLT (with a \ 1.55) yields quite di†erent results represented
by the dashed line.

lower value of a* to Ðt the Sun, which is more in agreement
with the results of Stothers & Chin (1992). Since the low-T
radiative opacities are probably still slightly underesti-
mated, and larger opacities require a larger a* to Ðt the Sun,
we prefer the present new Ñuxes over the original CM
values. The reason is that the latter, once the updated values
of low-T opacities become available, could require values of
a* larger than allowed by the observational upper limit on
overshooting.

As a further check, we have also applied the new Ñuxes to
the computation of evolutionary tracks and isochrones for
stars with Y \ 0.23 and Z\ 10~4. The isochrones are
shown in together with the Ðducial sequence of theFigure 6,
globular cluster M68. Details on the computations of both
tracks and isochrones, on the observational to theoretical
correlations, as well as the chemistry, reddening and dis-
tance modulus for M68 can be found in et al.Mazzitelli

Here we simply recall that the apparent ““ kinks ÏÏ in(1995).
the isochrones are a true physical feature, which is expected
and explained within the framework, and which existsCM
also in the present model.

The age of the cluster is in the range 11È12 Gyr, some-
what younger than the 12È13 Gyr found with the CM
Ñuxes, which itself is younger than the 13È15 Gyr derived
within the MLT. Whether this di†erence is signiÐcant for
solving the age conÑict of globular clusters with the age of
the universe, following from the recent determinations of
high values of et al. et al.H0 (Freedman 1994 ; Pierce 1994),
is beyond the purposes of the present paper. This point will
be discussed elsewhere et al.(Caloi 1997).

In conclusion, the application of the convective Ñuxes of
the present model to stellar structure does not alter appre-
ciably the main results of the model. Nevertheless, theCM
new model is preferable on two grounds. From the theoreti-
cal viewpoint, it determines the rate of input of energy from
buoyancy to the turbulence in a more physically consistent
manner. From the astrophysical point of view, it requires a

FIG. 6.ÈIsochrones in the HR diagram computed with the present
model for an extreme Population II chemical composition (Y \ 0.23 and
Z\ 10~4). Squares mark the Ðducial turn-o† region for the very metal-
poor globular cluster M68.
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smaller extent of overshooting, which is in better agreement
with recent observational results.

6. DISCUSSION

We have presented a self-consistent model for turbulent
convection based on a simpliÐed treatment of the nonlinear
interactions among the eddies. The important novel feature
of the present model is the formulation of a self-consistent
rate for energy input from the source (buoyancy) into the
turbulence, which depends both on the source parameters
and on the turbulence itself. This represents an improvement
compared to the model where the rate of energy inputCM
was the growth rate of the linear unstable modes. The focus
of the present model is on the self-consistent rate of energy
input at the expense of a less complete treatment of the
nonlinear eddy interactions. The latter is much simpler than
in the model and describes transfer only from small toCM
large wavenumbers. This representation neglects nonlocal
(in k space) interactions between the eddies that lead to a
reverse transfer (backscatter) that are included in the CM
model.

It is of interest to note that even the much simpler CGC
(1987) model shares the same qualitative behavior of the
convective Ñux relative to that of the MLT Ñux, as function
of the convective efficiency. The fact that three models dif-
fering in their treatment of the energy input rate and in the
modeling of the nonlinear transfer yield the same behavior
is quite intriguing. It suggests that accounting for the full
turbulence spectrum (common to all three models) is far
more important than the detailed way in which the latter is
done.

We have explored the model for a wide range of convec-
tive efficiencies and computed numerically the dimension-
less convective Ñux, the turbulent squared velocity, and the
root mean squared turbulent pressure, as functions of the
convective efficiency S. The results were Ðtted by analytical
formulae with precision better than 3% over the range
S \ 10~4È1020. The turbulent viscosity in the model is
already given by an analytic expression. The convective
Ñux, is larger than that of the MLT for high convective
efficiencies and lower than it for low convective efficiencies.
This general behavior is similar to that of the model.CM
The high S Ñuxes are very close to those predicted by the

model, but the intermediate and lower S Ñuxes areCM
larger than those of the model.CM

We have applied the new model to the main-sequence

evolution of a solar model as well as to evolutions of Popu-
lation II stars with The convective turbulentM ¹ 0.9 M

_
.

length scale was taken equal to the depth in the convective
zone, as in the model. The results are generally similarCM
to those of the model. However, the new model has theCM
advantage that the overshooting required to Ðt the solar
model is smaller than in the model. Also, the ages ofCM
globular clusters are smaller than the corresponding ages in
the model by D1 Gyr, which may help alleviate aCM
possible conÑict between the ages of globular clusters and a
high value of As already noted in the similarityH0. ° 5,
between the temperature proÐles for the solar model, pre-
dicted by the present and the models, renders theCM
models practically indistinguishable by helioseismological
data & Basu The situation is similar with(Antia 1995).
regard to solar atmosphere modeling (Kupka 1995).
However, atmospheres of cool stars are expected to yield
observable di†erences between the two models (Kupka
1995).

From the theoretical perspective, a more complete model
is one that incorporates a self-consistent rate of energy
input while keeping the nonlinear interactions in their full
generality, as done within the model. Work in thisCM
direction is in progress.

Finally, the present and the models are based onCM
two-point correlations of the turbulent quantities. This
methodology, preferred by the physics community, yields
information about the spectral properties of the turbulence.
Yet, its applicability to inhomogeneous and anisotropic
cases is limited. An alternative approach, based on one-
point correlation functions, is widely used in the engineer-
ing community and can handle anisotropy and
inhomogeneity. While the spectral information is lost in this
Reynolds Stress formalism, the method is easy to apply to
nonlocal and space-dependent problems and has the poten-
tial to treat stellar convective overshooting (Canuto 1993).
The method has already been successfully applied to the
planetary boundary layer (PBL), which is the seat of strong
convection et al. as well as to study the(Canuto 1994a),
interaction between shear, vorticity, and buoyancy at the
surface of the Sun Minotti, & Schilling(Canuto, 1994b).
Work is in progress to apply(Gabriel 1996 ; Houdeck 1996)
the same method to the study of helioseismology.

This work was supported by the US-Israel BSF grant
94-00314, to I. Goldman.
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